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OUTGASSING 

R. Jaeckel 

Physical In s t i t u t e  of Bonn University, Germany 

Outgassing r a t e  data based on the investigations of other 
authors and our own measurements are reviewed. It i s  shown tha t  out- 
gassing ra tes  depend on the material, i t s  treatment, and on the special  
conditions of application. In  order t o  be able t o  es tabl ish the most 
favorable conditions f o r  the evacuation of ultrahigh-vacuum apparatus, 
the fundamental physical processes (physical sorption, chemisorption, 
diffusion, so lubi l i ty ,  etc.  ) t ha t  determine the outgassing process 
must be known. 
the above-mentioned outgassing data permit conclusions concerning 
the lowest pressures now attainable i n  ultrahigh-vacuum systems. 

I n  conjunction with the corresponding physical l a w s ,  

A dTlfdR. 

The achievement of the low pressures character is t ic  of the 
ultrahigh-vacuum region depends decisively on the question of the 
outgassing of the materials forming the vessel  w a l l s  and the elements 
of the vacuum chamber. 

r a t e s  of different  materials (measured i n  tor r -1-sec  
made by numerous authors Fl-5, 7-10, 14, 153. The majority of these 
measurements r e l a t e  t o  the evolution of gas from specimen materials 
immediately a f t e r  their introduction in to  the vacuum and, indeed, at 
room temperature, without the materials having been subjected t o  any 
preliminary treatment. I n  most cases the methods used t o  measure 
the outgassing rate have been very similar (see Fig. 1). The gas is  
pumped out of the measuring chamber containing the specimen across a 
resistance and the flow calculated from the resul t ing pressure drop. 
Fig. 2 presents a review of gas evolution measurements based on the 
data  of various authors". Detailed discussions of the numerical 

Empirical measurements of the outgassing 
-1 -2 *cm ) have been 

*Pressure i n  the measuring chamber as a function of time f o r  a known 
rate of evacuation. 
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receiver 

(Pe < P ( t ) )  

(a) Lock-type apparatus (b) Receiver ri th throttl 
for s m a l l  specimens. and pump fo r  large speci- 

mens. 

Fig. 1. Apparatus for measuring gas evolution. 

values w i l l  be found i n  el, 3 ,  8, 15, 161. 
those cases i n  which the author not only measured the t o t a l  pressure of 
the gases evolved, but made a p a r t i a l  pressure analysis of the gas mix- 
tures present. At the  same time, the r e su l t s  of such p a r t i a l  pressure 
analyses must be t reated with considerable caution, since s ignif icant  
changes i n  the p a r t i a l  pressure composition may occur due to exchan e 
w i t h  the vessel  w a l l s ,  and this  w i l l  f a l s i f y  the analysis. Dayton f31 
has a par t icular ly  detailed and c r i t i c a l  discussion of the considera- 
t ions re la t ing  t o  outgassing data obtained i n  t h i s  way. 
p a r t i a l  pressure p 

r ives  a t  the following formula: 

Par t icular ly  important are 

/Lg 
For the 

of the n-th component of the gas mixture he ar- 
n 
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2 

ubber ( f la t )  

Fig. 2. G a s  evolution g as a function 
of time fo r  different  materials (based 
on measurements of various authors). 
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where q = gas evolved (torr- l*sec-1-cm'2), F = surface area (cm 2 ) , 
f = effusion fac tor ,  e = adsorption coefficient,  S = r a t e  of evacua- 
t i o n  f o r  the n-th component of the gas. 
presupposes a knowledge of the elementary constants as functions of the 
surface fract ion (subscript m) and the nature of the gas (subscript  n) .  

Various authors have concerned themselves with the investigation 

The application of t h i s  formula 

gas space gas space 
I 
I I 

I 
I I I 

Fig. 3 .  
f o r  a neutral  molecule approaching and pas- 
sing through a so l id  w a l l .  

Variation i n  potent ia l  U (schematic) 

of the elementary processes involved i n  outgassing. Let us consider 
(Fig. 3 )  the different potent ia l  values (U) t ha t  determine the forces 
between a so l id  w a l l  and a f r ee  molecule as it approaches the w a l l  
or passes through it. 
first  enters a quite shallow potent ia l  w e l l  without exceeding a 
potent ia l  threshold and hence i s  only quite loosely bound (physical 
adsorption). 
enters  a more t i gh t ly  bound s t a t e  a t  the surface of the so l id  w a l l  
(chemisorption) . 
threshold, a gas molecule can go over i n to  the dissolved state inside 
the solid.  
goes desorption, passing through the phases described i n  connection with 
adsorption i n  the opposite order. 
not a tom,  but molecules, the s tep of dissociation in to  atoms may 
intervene between chemisorption and dissolution i n  the sol id ,  while an 

The gas molecule tha t  approaches a so l id  w a l l  

After exceeding a low potent ia l  threshold, it then 

From t h i s  state, having exceeded a fur ther  potent ia l  

On re-emerging on the opposite s ide of the w a l l ,  it under- 

If the gas par t ic les  concerned are  
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analogous recombination step may be added on the desorption side. 

I 1 I 1 
I3 
12 

I I  

IO 
9 
8 
7 

1 I 
- I  0 I 2 3 

logiot' (horns) 

Fig. 4. 
of time t (schematic after Schram) . Gas evolution q as a function 

without dissociation with adsorption E"= E - a and 
0 nS 

1 - < p with dissociation without dissociation when p is n 
small 

without adsorption with dissociation E = E 1 
0 

( 3 )  g - -  
t* 

n 1 E = E  - a -  and-<@ 
0 n n 

S (4) q - emat without adsorption without dissociation E = E, " 
E = E - a and I;, < p with adsorption without dissociation n 0 nS 
E = Eo 

(5) q = permeation in stationary region. 
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Gas evolution: 

co.mpazison of pressure-time curves of 
specimens of the same material but d i f -  
fe ren t  thickness. 

Thickness of R 30 d = 4 m 
si l icone rubber 

R 30 'Li = 1.6 .DEU I 

n 
k 
k 
0 
-P 
W 

time t (hours) 

Fig. 5. 
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Among these elementary processes we can afford t o  disregard 
physical adsorption, since with the methods usually employed i n  vacuum 
technology such loosely bound gas molecules are generally very quickly 
removed in to  the gas space. I n  connection with chemisorption and the 
dissolution of the gas molecules i n  so l id  w a l l s  o r  t h e i r  diffusion 
through such w a l l s ,  par t icular  importance attaches t o  the question 
whether f o r  a given outgassing treatment desorption from the chemisorbed 
state o r  diffusion through the so l id  w a l l s  i s  decisive i n  re la t ion  t o  
time. Certainly, desorption can be accelerated by rais ing the tempera- 
tu re ,  but if t h i s  resu l t s  i n  the diffusion being so intensif ied tha t  

/20 

f- 
4 
k 
k 
0 

t i m e  t (min) time t (min) 

Fig. 6. 
In  each case the pressure-time curves were measured irnme- 
d ia te ly  a f t e r  the temperature of the vessel  w a s  ra ised t o  
the value given as parameter. 
on the time scale coincides with the moment the vessel  
temperature w a s  raised (after Schittko) . 

Gas evolution a t  different  temperatures (Araldit) . 

For each curve the zero point 

addi t ional  supplies from the atmosphere are furnished more rapidly 
through the vessel  w a l l ,  the effect  of ra is ing the temperature will 
actual ly  be the opposite of t ha t  aimed at. Thus, it i s  of the utmost 
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importance t o  know how the outgassing process i s  affected a t  different  
temperatures by desorption or diffusion through the so l id  wall. 
problem has been tackled from various angles, notably by Kraus e l l ]  (see 
Fig. 4), but Schram's discussion e161 i s  par t icular ly  thorough. 
evolution of gas from the surface (9) expressed as a function of time 
is  expanded i n  powers of t, and only the first term of the ser ies  is  
considered, it i s  possible t o  draw conclusions concerning the dominant 
process i n  re la t ion  t o  time. 
conclude tha t  the dominant process i s  diffusion; a dependence of l:t, 
on the other hand, would point t o  desorption as the dominant influence. 
I n  cer ta in  circumstances it would also be necessary t o  consider the 
effect  of dissociation, as i l l u s t r a t e d  by Fig. 4. (based on Schram's 
work h 6 3 ) .  
cautiously. 
the time expansion can be neglected and (2) does the shape of the curve 
for  dominant desorption depend on the shape of the adsorption isotherms 
tha t  determine the process. 

If, i n  connection with t h i s  analysis, we cast  another glance a t  
Fig. 2, which gives the gas evolved by d i f fe ren t  materials, we see t h a t  
the curves f o r  the metals have an essent ia l ly  steeper slope than those 
f o r  p las t ics ,  from which we m u s t  conclude tha t  with metals desorption 
and with p las t ics  diffusion are  the time-controlling factors .  I would 
l ike  t o  postpone consideration of these problems, however, and return 
t o  them at  a later point. I n  t h i s  connection, a cer ta in  in t e re s t  attaches 
t o  Fig. 5, which shows the pressure-time curve i n  a measuring chamber 
during the outgassing of va r i e t i e s  of s i l icone rubber, based on measure- 
ments made by my colleague H. v. Mtinchhausen. The upper two curves f o r  
untreated s i l icone resemble those f o r  p las t ics  i n  Fig. 2. The lower 
two curves f o r  pretreated s i l icone rubber are  par t icular ly  interesting. 
These specimens were kept i n  a drying oven f o r  one hour at 2OO0C and 
atmospheric pressure. Then the lower t w o  curves were registered. It 
is c lear  t ha t  these curves can be divided in to  three parts.  The f irst  
par t ,  characterized by a steeper slope, would correspond t o  a region i n  
which desorption i s  dominant; the second par t ,  with a somewhat gentler 
slope, corresponds t o  a region i n  which diffusion i s  the controll ing 
process; the t h i r d  par t ,  the t a i l  of the curve, returns t o  the steeper 
slope. These resu l t s ,  together with those s t i l l  t o  be reported, indi-  
cate t ha t  there is always an interplay between desorption from the sur- 
face and replenishment by diffusion from the in t e r io r  of the material. 
I n  a s t a t e  of stationary equilibrium, the slower process of diffusion 
i s  decisive, as far as s i l icone rubber i s  concerned. 
di t ions are disturbed by preliminary treatment, the more rapid process 

over the so l id  has been restored, whereupon the diffusion process w a i n  
becomes dominant. Finally, the concentration inside the so l id  begins 
t o  decline, with the r e su l t  t h a t  the t o t a l  desorption r a t e  must fa l l ,  
which would explain the th i rd  par t  of the curves reproduced here. 

This 

If the 

If q depends on the t i m e  as 1: 0, we may /21 

O f  course, the r e su l t s  of such analyses should be t reated 
(1) Does the method presuppose t h a t  the higher powers of 

If stationary con- 

of desorption a l so  comes in to  prominence, u n t i l  uniform dis t r ibut ion /22 
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Fig. 7. G a s  evolution at  different  temperatures 
(Araldit) . Pressure vs. l / T  (after Schittko) . Calcu- 
la ted activation energies of the order of 10 kcal/mole. 
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Fig. 8. 
method) f o r  a t o t a l  pressure of 2 
t o r r .  

Residual gas spectrum (Redhead 

A s  an example of gas evolution measurements a t  increased tempera- 
tures ,  1 offer  Fig. 6, based on measurements .made by my colleague 
Schittko on the evolution of gas from Araldit  specimens when the tem- 
perature is  raised stepwise. 
gas evolution as a function of temperature, plotted as the log of the 
gas evolution i n  Maseinum against 1/T, gives s t ra ight  l ines,  the slope 
of which i s  a measure of the act ivat ion energy of the desorption process 

The analysis of these measurements of the 
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(Fig. 7). 
of the order of 10 kcal/mole and are  thus i n  agreement with Redhead's 
values f o r  higher temperatures c131 and the data  of Schram h61 .  
head investigated the influence of temperature on the desorption process 
by a rather  d i f fe ren t  method, involving the slow heating of gas-charged 
wires, and found tha t  a t  special  temperatures, c r i t i c a l  f o r  the d i f fe r -  
ent gases, a very strong evolution of gas w a s  suddenly t o  be observed. 
The pressure peaks thus measured f o r  constant increase i n  temperature 
and simultaneous pressure reg is t ra t ion  (Fig. 8) are a measure of the 
character is t ic  temperature of the desorption process and hence of the 
desorption energy. 

The measured act ivat ion energies, obtained i n  t h i s  way, are 

Red- /23 

Slide . I  -'-I S l ide 

I 

-I I ' 
To pump system 

Fig. 9. Apparatus f o r  measuring gas 
evolution at  increased temperature 
( a f t e r  Flecken and WSller) . 

colleagues Flecken and N ' d l l e r  have a l so  made measurements of 
gas evolution a t  higher temperatures, i n  par t icular  under ultrahigh- 
vacuum conditions. They used an apparatus of the type i l l u s t r a t ed  i n  
Fig. 9. I s h a l l  only dwell b r i e f ly  on t h i s  work, since it i s  described 
i n  d e t a i l  elsewhere i n  t h i s  symposium. The gas evolution of a specimen 
i n  anultrahigh-vacuum system a t  room temperature can be measured with 
an omegatron and an ionization manometer and then by means of two mag-  
net ic  s l ides  the specimen can be transported t o  and removed from a fur -  
nace previously brought t o  a cer ta in  increased temperature. By way of 
example, Fig. LO shows curves recorded i n  t h i s  way f o r  the gas evolution 
in to  an ultrahigh vacuum as a function of the time after the introduc- 
t i on  of the specimen into the hot furnace. 
temperature of 2OO0C shows that a t  t h i s  low temperature it i s  mainly 

/24 

The curve recorded a t  a 



water vapor t h a t  i s  desorbed. 
the presence of CO, C02, % and various hydrocarbons, as well  as water 
vapor. 

By contrast ,  the curve f o r  $OoC indicates 

I x io-" 

8 x d2 
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2 x io-'2 

Outgassing temp 2 0 0 ~ ~  

-- 

i,_ 
0 30 60 

Outgassing temp 4 5 0 ° C  

0 30 BQ 

t (min) 

Fig. 10. Curves of d i f f e ren t i a l  gas evolution 
at different  temperatures ( a f t e r  Flecken and 
N5ller). 
weight of type of gas evolved. 

Numbers attached t o  curves = molecular 
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Ao'0.031-0,049 
Ao:O.O8-0.11 

2 6 IO 14 18 22 26 30 34 

Duration of outgassing process (hours) 

Fig. 11. Investigations of the desorption 
of N2 from a-iron a t  700°C in to  a high 

vacuum (a f t e r  Junge). The four curves 
show t h a t  the decrease i n  concentration c 
depends on the i n i t i a l  concentration co. 

Presence of a bimolecular surface reaction. 

A s  a last method of measuring gas evolution a t  increased tempera- 
tures,  I would l i ke  t o  mention a method tha t  m y  colleague Junge [91 
has recently used with success. 
method of resonance damping of e l a s t i c  vibrations by means of gases 
dissolved i n  the vibrating metal. A s  is  known, the decrement depends 
on the temperature and the amount of gas dissolved, to which the mea- 
sured m i m u m  amplitude of the vibration i s  proportional. Thus, with 
t h i s  method, as d i s t inc t  from a l l  the other methods so f a r  described, 
the evolution of gas can be determined not only from the increase i n  the 
amount of gas i n  the gas space, but d i rec t ly  from the decrease i n  the 
amount of gas i n  the metal i tself ,  which, of course, i s  an important new 

It consists i n  applying the known 



approach. 
vestigated the desorption of nitrogen from a-iron a t  temperatures of 
up to I-/OO"C. 
centration ( C )  of nitrogen dissolved i n  a-iron as a functicn of the 
time (t) during which the i ron  wire being outgassed w a s  kept i n  a 
vacuum a t  700°C. I n i t i a l l y ,  the measured values, shown together with 
the corresponding errors ,  do not appear to define a regular curve. 
Nevertheless, it can be seen t h a t  the outgassing process as a whole 

Comparison with Fas t ' s  e a r l i e r  measurements 
f171 on the diffusion of nitrogen i n  a-iron shows t h a t  the outgassing 
process as a whole proceeds more slowly than diffusion. Thus, the de- 
sorption process must control the outgassing t w e .  If we fur ther  
assume tha t  the desorption process i s  linked w i t h  the recombination of 
pairs  of N atoms to form pJ2 molecules, the desorption w i l l  be described 
by a d i f f e ren t i a l  equation of the form: 

I s h a l l  merely mention b r i e f ly  tha t  i n  t h i s  way we have in-  

Fig. 11 shows the decreases i n  the decrement (A) or con- /25 

roceeds very slowly. 

2 dc 
d t  
- -  - - K C  e 

The curves f o r  the solution of t h i s  d i f f e ren t i a l  equation depend on the 
i n i t i a l  concentration co or the i n i t i a l  damping Ao. The curves i n  Fig. 
11 have been plot ted f o r  four i n i t i a l  concentrations. Clearly, the 
measured points can to a large extent be dis t r ibuted over these four 
curves. This would mean tha t  the assumption concerning the contribu- 
t ions of the various elementary processes to the outgassing of nitrogen 
i n  a-iron i s  a reasonable one. Thus, rapid diffusion from the in t e r io r  
of the a-iron would be followed a t  the surface of the i ron by a slow 
desorption process, linked with the recombination of atomic to molecular 
nitrogen, t ha t  controls the course of the outgassing process. 

outgassing processes f o r  the following groups: metals, ceramics, glasses 
and quartz, and plast ics .  The data, of course, are only averaged, since 
the numerical values vary considerably within the individual groups. 

Finally, Table I gives the physical constants that determine the 

DISCUSSION 

D. Alpert, University of I l l i no i s :  

Answer: Range from to loa  Torr. 

What i s  the range of pressures your 
method can detect? 
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A. E. Barrington, Varian: How is the attenuation of the molecular beam 
measured? 

Answer: The molecular beam consists of neutral  potassium atoms. They 8 

are detected with a Langmuir-Taylor Detector (a hot tungsten 
wire f o r  the ionization of the impinging neutral  atoms and a 
surrounding negative gr id  for collecting the posit ive ions). 7 
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